Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Free energy simulations reveal a double mutant avian H5N1 virus hemagglutinin with altered receptor binding specificity

Identifieur interne : 000102 ( 1957/Analysis ); précédent : 000101; suivant : 000103

Free energy simulations reveal a double mutant avian H5N1 virus hemagglutinin with altered receptor binding specificity

Auteurs : Payel Das [États-Unis] ; Jingyuan Li [États-Unis] ; Ajay K. Royyuru [États-Unis] ; Ruhong Zhou [États-Unis]

Source :

RBID : ISTEX:C8B9152E8726AE6DDFB895A98801958C4F54D46B

English descriptors

Abstract

Historically, influenza pandemics have been triggered when an avian influenza virus or a human/avian reassorted virus acquires the ability to replicate efficiently and become transmissible in the human population. Most critically, the major surface glycoprotein hemagglutinin (HA) must adapt to the usage of human‐like (α‐2,6‐linked) sialylated glycan receptors. Therefore, identification of mutations that can switch the currently circulating H5N1 HA receptor binding specificity from avian to human might provide leads to the emergence of pandemic H5N1 viruses. To define such mutations in the H5 subtype, here we provide a computational framework that combines molecular modeling with extensive free energy simulations. Our results show that the simulated binding affinities are in good agreement with currently available experimental data. Moreover, we predict that one double mutation (V135S and A138S) in HA significantly enhances α‐2,6‐linked receptor recognition by the H5 subtype. Our simulations indicate that this double mutation in H5N1 HA increases the binding affinity to α‐2,6‐linked sialic acid receptors by 2.6 ± 0.7 kcal/mol per HA monomer that primarily arises from the electrostatic interactions. Further analyses reveal that introduction of this double mutation results in a conformational change in the receptor binding pocket of H5N1 HA. As a result, a major rearrangement occurs in the hydrogen‐bonding network of HA with the human receptor, making the human receptor binding pattern of double mutant H5N1 HA surprisingly similar to that observed in human H1N1 HA. These large scale molecular simulations on single and double mutants thus provide new insights into our understanding toward human adaptation of the avian H5N1 virus. © 2009 Wiley Periodicals, Inc. J Comput Chem 2009

Url:
DOI: 10.1002/jcc.21274


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:C8B9152E8726AE6DDFB895A98801958C4F54D46B

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Free energy simulations reveal a double mutant avian H5N1 virus hemagglutinin with altered receptor binding specificity</title>
<author>
<name sortKey="Das, Payel" sort="Das, Payel" uniqKey="Das P" first="Payel" last="Das">Payel Das</name>
</author>
<author>
<name sortKey="Li, Jingyuan" sort="Li, Jingyuan" uniqKey="Li J" first="Jingyuan" last="Li">Jingyuan Li</name>
</author>
<author>
<name sortKey="Royyuru, Ajay K" sort="Royyuru, Ajay K" uniqKey="Royyuru A" first="Ajay K." last="Royyuru">Ajay K. Royyuru</name>
</author>
<author>
<name sortKey="Zhou, Ruhong" sort="Zhou, Ruhong" uniqKey="Zhou R" first="Ruhong" last="Zhou">Ruhong Zhou</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:C8B9152E8726AE6DDFB895A98801958C4F54D46B</idno>
<date when="2009" year="2009">2009</date>
<idno type="doi">10.1002/jcc.21274</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-BN7Z9DS1-D/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001443</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001443</idno>
<idno type="wicri:Area/Istex/Curation">001443</idno>
<idno type="wicri:Area/Istex/Checkpoint">000298</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000298</idno>
<idno type="wicri:doubleKey">0192-8651:2009:Das P:free:energy:simulations</idno>
<idno type="wicri:Area/Main/Merge">001190</idno>
<idno type="wicri:Area/Main/Curation">001180</idno>
<idno type="wicri:Area/Main/Exploration">001180</idno>
<idno type="wicri:Area/1957/Extraction">000102</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Free energy simulations reveal a double mutant avian H5N1 virus hemagglutinin with altered receptor binding specificity</title>
<author>
<name sortKey="Das, Payel" sort="Das, Payel" uniqKey="Das P" first="Payel" last="Das">Payel Das</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Li, Jingyuan" sort="Li, Jingyuan" uniqKey="Li J" first="Jingyuan" last="Li">Jingyuan Li</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Department of Chemistry, Columbia University, New York</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Royyuru, Ajay K" sort="Royyuru, Ajay K" uniqKey="Royyuru A" first="Ajay K." last="Royyuru">Ajay K. Royyuru</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Ruhong" sort="Zhou, Ruhong" uniqKey="Zhou R" first="Ruhong" last="Zhou">Ruhong Zhou</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Department of Chemistry, Columbia University, New York</wicri:cityArea>
</affiliation>
<affiliation></affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Correspondence address: Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights</wicri:cityArea>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Computational Chemistry</title>
<title level="j" type="sub">Free Energy Simulations: Methods and Applications</title>
<title level="j" type="alt">JOURNAL OF COMPUTATIONAL CHEMISTRY</title>
<idno type="ISSN">0192-8651</idno>
<idno type="eISSN">1096-987X</idno>
<imprint>
<biblScope unit="vol">30</biblScope>
<biblScope unit="issue">11</biblScope>
<biblScope unit="page" from="1654">1654</biblScope>
<biblScope unit="page" to="1663">1663</biblScope>
<biblScope unit="page-count">10</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2009-08">2009-08</date>
</imprint>
<idno type="ISSN">0192-8651</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0192-8651</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Analog</term>
<term>Average probability</term>
<term>Avian</term>
<term>Binding changes</term>
<term>Chem</term>
<term>Chem phys</term>
<term>Cocrystal structures</term>
<term>Comput chem</term>
<term>Computational</term>
<term>Computational chemistry</term>
<term>Conformation</term>
<term>Double mutation</term>
<term>Electrostatic interactions</term>
<term>Energy change</term>
<term>Energy changes</term>
<term>Free energy change</term>
<term>Free energy units</term>
<term>Free energy values</term>
<term>Free state</term>
<term>Glycan</term>
<term>Glycans</term>
<term>Hemagglutinin</term>
<term>Human adaptation</term>
<term>Human population</term>
<term>Human receptor</term>
<term>Human receptor analog</term>
<term>Human receptor binding</term>
<term>Hydrogen bond</term>
<term>Hydrogen bonds</term>
<term>Information figure</term>
<term>Major rearrangement</term>
<term>Methods section</term>
<term>Moiety</term>
<term>Mutant</term>
<term>Mutation</term>
<term>Other hand</term>
<term>Paulson</term>
<term>Proc natl acad</term>
<term>Receptor</term>
<term>Receptor binding</term>
<term>Receptor structure</term>
<term>Relative binding</term>
<term>Representative conformation</term>
<term>Sialylated</term>
<term>Sialylated glycan receptors</term>
<term>Sialylated glycans</term>
<term>Simulation</term>
<term>Single mutants</term>
<term>Skehel</term>
<term>Standard deviations</term>
<term>Virus hemagglutinin</term>
<term>Waals</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Historically, influenza pandemics have been triggered when an avian influenza virus or a human/avian reassorted virus acquires the ability to replicate efficiently and become transmissible in the human population. Most critically, the major surface glycoprotein hemagglutinin (HA) must adapt to the usage of human‐like (α‐2,6‐linked) sialylated glycan receptors. Therefore, identification of mutations that can switch the currently circulating H5N1 HA receptor binding specificity from avian to human might provide leads to the emergence of pandemic H5N1 viruses. To define such mutations in the H5 subtype, here we provide a computational framework that combines molecular modeling with extensive free energy simulations. Our results show that the simulated binding affinities are in good agreement with currently available experimental data. Moreover, we predict that one double mutation (V135S and A138S) in HA significantly enhances α‐2,6‐linked receptor recognition by the H5 subtype. Our simulations indicate that this double mutation in H5N1 HA increases the binding affinity to α‐2,6‐linked sialic acid receptors by 2.6 ± 0.7 kcal/mol per HA monomer that primarily arises from the electrostatic interactions. Further analyses reveal that introduction of this double mutation results in a conformational change in the receptor binding pocket of H5N1 HA. As a result, a major rearrangement occurs in the hydrogen‐bonding network of HA with the human receptor, making the human receptor binding pattern of double mutant H5N1 HA surprisingly similar to that observed in human H1N1 HA. These large scale molecular simulations on single and double mutants thus provide new insights into our understanding toward human adaptation of the avian H5N1 virus. © 2009 Wiley Periodicals, Inc. J Comput Chem 2009</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Das, Payel" sort="Das, Payel" uniqKey="Das P" first="Payel" last="Das">Payel Das</name>
</region>
<name sortKey="Li, Jingyuan" sort="Li, Jingyuan" uniqKey="Li J" first="Jingyuan" last="Li">Jingyuan Li</name>
<name sortKey="Royyuru, Ajay K" sort="Royyuru, Ajay K" uniqKey="Royyuru A" first="Ajay K." last="Royyuru">Ajay K. Royyuru</name>
<name sortKey="Zhou, Ruhong" sort="Zhou, Ruhong" uniqKey="Zhou R" first="Ruhong" last="Zhou">Ruhong Zhou</name>
<name sortKey="Zhou, Ruhong" sort="Zhou, Ruhong" uniqKey="Zhou R" first="Ruhong" last="Zhou">Ruhong Zhou</name>
<name sortKey="Zhou, Ruhong" sort="Zhou, Ruhong" uniqKey="Zhou R" first="Ruhong" last="Zhou">Ruhong Zhou</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/1957/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000102 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/1957/Analysis/biblio.hfd -nk 000102 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    1957
   |étape=   Analysis
   |type=    RBID
   |clé=     ISTEX:C8B9152E8726AE6DDFB895A98801958C4F54D46B
   |texte=   Free energy simulations reveal a double mutant avian H5N1 virus hemagglutinin with altered receptor binding specificity
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021